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We study the possibility of transfering a particle held in a far-field optical trap, namely the classical
optical tweezers, to a near-field trap, in the form of a tapered metal tip �otherwise called an
“apertureless probe”�. The paper is theoretical: we compute the electromagnetic fields in both
configurations, based on a vectorial nonparaxial representation of the Gaussian laser beam in the
waist region. We afterwards use the coupled dipole method to compute the optical force acting on
a spherical dielectric particle, in the 0.2−1 �m range in diameter. We find that either repulsion or
attraction of the particle by the metal probe is possible, depending on the beam polarization state,
particle size, and curvature radius of the metal tip. Equilibrium states of the particle in contact with
the tip, under illumination by the laser beam, are predicted. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2759892�

I. INTRODUCTION

Optical tweezers1 are now a well-established tool in the
arsenal of optical microscopy techniques. Classically, optical
trapping is achieved near the focus of a laser beam that has
been passed through a very large aperture microscope objec-
tive. This configuration allows both observing and manipu-
lating small structures within the microscope field of view.
The spatial resolution, being in the context of far-field mi-
croscopy, is at best on the order of a visible wavelength ���.

As is well known, scanning techniques exploiting the
near-field components of the electromagnetic �EM� field now
allow building images with subwavelength resolution.2

These techniques usually employ a small aperture or a ta-
pered metal tip �a so-called “apertureless probe”�,3 which is
moved very short distance ���� above the object to be im-
aged. Inspired by the recent developments in far-field optical
trapping, researchers have looked for the possibility of com-
bining imaging and manipulation modes in optical near-field
microscopy.4–8 For instance, numerical studies by Novotny
et al.,4 and Furukawa and Kawata,8 predicted that enhance-
ment of the EM field near the extremity of a metal tip illu-
minated by a plane wave is large enough to provide a stable
optical trap for nanometer-sized dielectric particles. A similar
conclusion was arrived at by Okamoto and Kawata,5 and
Kwak et al.7 with a nanoaperture through a metal surface. An
alternate configuration, involving an apertureless metal probe
above a dielectric surface illuminated from below in the total
internal reflection regime has been investigated by Chaumet
et al.6 These authors analyzed and demonstrated the possi-
bility of using the metal tip to pick up and move particles

above the substrate, playing with in-plane �transverse mag-
netic �TM�� and out-of-plane �transverse electric �TE�� polar-
izations of the illuminating field.

In this article, we study the experimental scheme in
which a particle held by optical tweezers can be transferred
to a near-field probe, in the form of a metal tip �see Fig. 1�.
In other words, we address the problem of relaying a far-field
optical trap by a near-field one. This theoretical paper is de-
signed as a predictive tool to guide experiments to come. In
principle, these experiments will combine classical optical
tweezers and a metal tip that will be driven close to the focus
of the laser beam. We suppose that a spherical dielectric
particle has been stably trapped by the laser beam and inves-
tigate the perturbation caused to the particle equilibrium by
the proximity of the metal tip �see Fig. 1�. Basically, we want
to know whether the force between the particle and the metal
tip is repulsive or attractive, and whether the particle can be

FIG. 1. �Color online� Geometry of the optical manipulation. A Gaussian
beam traps a glass particle immersed in water. A tapered metal probe is
afterwards brought close to the particle.
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kept in stable contact with the tip. Particle sizes are in the
0.2−1 �m range, somehow at the lower limit for observabil-
ity in real experiments. The paper is organized as follows: in
Sec. II, we set out the method to compute EM fields and the
related optical forces. We first briefly summarize the prin-
ciples of the coupled dipole method and pose the relation
used for computing optical forces �Sec. II A� in general.9 As
we deal with tightly focused laser beams, it is necessary to
go beyond the classical �paraxial� formalism of Gaussian
beams to describe the focal region of the beam. This problem
is the matter of Sec. II B: based on the angular spectrum
representation of Gaussian beams,10 we set up expressions
for the three-dimensional EM field and its derivatives near
the focus of the beam, beyond the paraxial approximation.
Section III A deals with the primary problem of computing
trap forces in the pure optical tweezers geometry, i.e., an
isolated spherical particle trapped by a large aperture beam.
Axial and lateral trap forces are computed for TE and TM
field configurations. We come to the metal-tip problem in
Sec. III B. We first consider the perturbation caused by a
metal tip approaching a particle held in the trap region of an
optical tweezers, and show that the tip–particle interaction
may be either attractive or repulsive according to the field
polarization. We afterwards consider the situation of a sphere
in contact with the tip, in a coaxial configuration, and deter-
mine whether this configuration can be kept stable under the
sole action of optical forces. These findings are discussed in
Sec. IV within the prospect of experimental testing with
silica or polystyrene particles in water. We add a discussion
about colloidal forces and possible complications due to
heating of the metal tip and the resulting convection of the
fluid around it. The paper is summarized and concluded in
Sec. V. Complete definitions of functions used in Sec. II and
for the laser beam power, are given in Appendices A and B,
respectively. Estimates of colloidal forces are derived in Ap-
pendix C.

II. COMPUTATION OF THE OPTICAL FORCES

A. The coupled dipole method

We use the so-called coupled dipole method �CDM� to
compute the optical forces. Below, we only briefly recall the
principles of the method, referring the reader to previous
publications for details.9,11 The object under study is repre-
sented by a cubic array of N polarizable subunits. The elec-
tric local field E�ri� at each subunit position ri can be ex-
pressed as

E�ri� = E0�ri� + �
j=1

N

T�ri,r j���r j�E�r j� , �1�

where E0�ri� is the incident field at position ri. T is the
Green function for the field radiated by a dipole in free
space.12 ��r j� is the polarizability of the subunit j, within
which we include the Claussius–Mossotti relation for the ra-
diative reaction term.13 Then, the time-averaged optical force
experienced by each subunit is given by

Fk�ri� = �1/2�Re���ri�El�ri�� �

�k
El�r��

r=ri

� 	 , �2�

where k and l stand for the components along either x, y, or
z, Re denotes the real part and � the complex conjugate. Note
that the above relation contains both components of the op-
tical force, usually referred to as the “gradient” and “scatter-
ing” force components in the basic formulation of optical
tweezers theory.1,14,15 As the object is a set of N small sub-
units, we obtain the total force on the particle by simply
summing the F�ri� contributions on each dipole.

To compute the optical forces one needs the derivative of
the local field, which can be obtained in deriving Eq. �1�.16

Computing the local field derivative involves expressions of
both the incident field and its derivative: these expressions
are set out in Sec. II B, below.

B. Definition of the Gaussian beam

Optical levitation and trapping of micrometer-sized par-
ticles has been abundantly demonstrated with Gaussian laser
beams.1 Optical forces due to a single beam have already
been computed, based on approximate representations of the
EM field, in ray optics or paraxial regimes �for a summary
and a list of useful references, see Sec. VI in Ref. 1�. For
instance, the case of a beam of moderate aperture has been
treated through a generalization of the Lorenz–Mie
theory,17–19 or using the T-matrix method.20 The representa-
tion of a tightly focused beam �in other words, of a very
large aperture beam�, as those used in single-beam optical
tweezers designs, is a much more involved problem, which
has only been tackled in recent years.21–25

The manipulation of a nonabsorbing particle of size on
the order of a wavelength is often done with a highly focused
beam obtained through a high numerical aperture objective
lens, see, for example, Refs. 14, 26, and 27. The laser beam
is classically represented as Gaussian.14,26,27 Below, we set
out expressions for a tightly focused beam, whose intensity
profile in the beam-waist plane is Gaussian.

When the waist, w0, is smaller than the wavelength, the
beam must be described as vectorial, with both transverse
and longitudinal components. The problem of interest in this
article, i.e., computing the forces acting on a particle trapped
in the focal region of the beam, calls for expressions for the
vector EM field in this region. Below, we derive exact ex-
pressions, based on the so-called angular spectrum represen-
tation of the beam:10,28

Ex�r� = 

−�

+� 

−�

+�

Ax�kx,ky�exp�i�kxx + kyy + kzz��dkxdky ,

�3�

Ey�r� = 

−�

+� 

−�

+�

Ay�kx,ky�exp�i�kxx + kyy + kzz��dkxdky ,

�4�
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Ez�r� = − 

−�

+� 

−�

+� � kx

kz
Ax�kx,ky� +

ky

kz
Ay�kx,ky�	

�exp�i�kxx + kyy + kzz��dkxdky , �5�

where the z axis is the direction of propagation. The wave
vector has a magnitude k0, with k0

2=kx
2+ky

2+kz
2. The beam is

defined as Gaussian in the z=0 plane,23 i.e., El�x ,y ,0�
=E0l exp�−�2 /2w0

2� with �2=x2+y2 and E0l the magnitude of
the Gaussian beam at the origin �where l stands for either x
or y�. Then we obtain

Al�kx,ky� = E0l

w0
2

2�
exp�−

k2w0
2

2
� , �6�

with k2=kx
2+ky

2. The above relations are the basis for com-
puting the EM field components everywhere in space.28 After
some algebra �see Ref. 28 for details�, we arrive at the fol-
lowing set of exact expressions, for the components of the
EM field. We derive analytical expressions for the field de-
rivatives as well, to be used for the computation of the opti-
cal forces:

El�r� = E0lI1�r� , �7�

Ez�r� = − i�sin �E0x + cos �E0y�I4�r� , �8�

�El�r�
�x

= − E0lI2 sin � , �9�

�El�r�
�y

= − E0lI2 cos � , �10�

�El�r�
�z

= E0lI3, �11�

�Ez�r�
�x

= − E0x�cos�2��I6 + I5� + E0yI6 sin�2�� , �12�

�Ez�r�
�y

= E0y�cos�2��I6 − I5� + E0xI6 sin�2�� , �13�

�Ez�r�
�z

= I2�sin �E0x + cos �E0y� , �14�

with sin �=x /�, cos �=y /�. Definitions of the Ii terms for
i=1, . . . ,6 are given in Appendix A, in the form of integrals
on k.

III. RESULTS

The configuration of interest in this article is sketched in
Fig. 1. We assume a Gaussian beam, of waist w0, at wave-
length �=1060 nm in vacuum, and of constant power, P
=0.1 W �the relation between P and the magnitude E0 of the
incident field is given in Appendix B�. The focused Gaussian
beam provides an optical trap, to be used to manipulate and
move a sphere of radius a. We suppose that the particle and
the tip are immersed in water �nwater=1.33�, as in the real
experimental situation.

A. Isolated particle in a Gaussian beam

Here, we address the situation when the tip is absent,
i.e., the ordinary optical tweezers problem, with a spherical
particle in water. Figures 2 and 3 show the trapping perfor-
mance of the configuration for three different values of the
particle radius a, in longitudinal and transverse directions,
respectively. The particle is supposedly made of glass �n
=1.5�. In Fig. 2�a�, Fz is the component of the optical force
along the z axis. The beam-waist value is fixed: w0

=400 nm. To help the readability of the diagram, the force
has been scaled by �k0a�3. The third power in a was chosen
in reference to the Rayleigh regime, corresponding to a��:
in this limit, optical gradient forces are proportional to a3.
Applicability of the Rayleigh approximation would mean
that all curves merge onto a single master curve. Clearly, this
is not so, meaning that the particle radii in the examples of
Fig. 2 are well above the Rayleigh limit.

FIG. 2. �a� z component of the force experienced by a glass sphere �n
=1.5� of radius a embedded in water �nwater=1.33�, along the z axis, when it
is illuminated by a Gaussian beam, with P=0.1 W, w0=400 nm �
=1060 nm in vacuum. For clarity and reference to the Rayleigh approxima-
tion, the force is scaled by �k0a�3. a=100 nm in bold line, a=300 nm in
dashed line and a=500 nm in dotted line. �b� Work required to bring the
sphere from z=−� to z, in kbT units scaled by �k0a�3. The position of stable
equilibrium corresponds to zequi=146 nm for a=100 nm, zequi=668 nm for
a=300 nm and zequi=791 nm for a=500 nm.

FIG. 3. �a� x component of the optical force scaled by �k0a�3 �the sphere
moves parallel to the x axis, in the plane corresponding to the position of
axial stable equilibrium, z=zequi and y=0�. a=100 nm in bold line, a
=300 nm in dashed line and a=500 nm in dotted line. �b� Work required to
bring the sphere from x=−� to x, in kbT �T=300 K� units scaled by �k0a�3.
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Figure 2�b� shows the work U required to bring the
sphere from z=−� to z. The quantity in ordinate is scaled to
�k0a�3, as for the force, and the thermal energy kbT has been
taken as the unit energy �T=300 K is room temperature and
kb=1.38�10−23 J /K is Boltzmann’s constant�. The position
of stable equilibrium, i.e., the minimum in U �which corre-
sponds to Fz=0 in Fig. 2�a��, is located at zequi=146 nm for
a=100 nm. When a increases, the equilibrium position
moves to a slightly positive z: qualitatively, this may be un-
derstood as the result of the drastic increase of the scattering
force �which grows as a6 in the Rayleigh limit�, while the
gradient force only increases as a3 �again, in Rayleigh limit�.
Positions of stable equilibrium are zequi=668 nm for a
=300 nm and zequi=791 nm for a=500 nm. Because of the
temperature bath, the trapped particle undergoes Brownian
excursions, whose variance is given by �z2�
=kbT��2U /�z2�−1. Table I gives the depth of the potential
well and the amplitude of the excursion in z �square root of
the variance� for the previous particle radii and two different
values of the beam waist. Note that the potential depths are
definitely larger than 10kbT and that the excursions are al-
ways less than a particle radius. Large spheres are more
tightly trapped than small ones. Not surprisingly, the effi-
ciency of longitudinal trapping is better with a narrower
waist.

Notice that if the paraxial approximation is used, i.e., the
well-known approximation for the Gaussian beam as it has
been expressed in Ref. 29, Eq. �3�, then the optical force
obtained for the smaller radius �a=100 nm� is very close to
that from our rigorous approach. However, this is no longer
the case when the particle size increases. Not only the mag-
nitude of the optical force is different �by a factor of 2 when
a=500 nm�, but, more dramatically, the paraxial approach
predicts no position of axially stable equilibrium for a
=300 nm and a=500 nm. This comparison shows the im-
portance of a rigorous description of the large aperture
Gaussian beam structure in computing optical forces.

Figure 3�a� shows the transverse component of the opti-
cal force, supposing a beam polarization parallel to the figure
plane, �x ,z� �from now on, this configuration will be referred
to as TM�. Figure 3�a� shows the force experienced by the
sphere when moving parallel to the x axis, at y=0 and z
=zequi. Figure 3�b� corresponds to the work required to bring
the sphere from x=−� to x, taking kbT as the unit energy, as
before. Clearly, the potential well is always larger than
10kbT. Therefore we conclude that the spheres are stably
trapped in the three spatial dimensions.

We checked that the polarization only induces a very
small anisotropy in the transverse force: in other words,
switching the polarization from TM to TE hardly changes the
x force profile.

B. Particle in presence of a metallic tip

Now we want to study the effects of a metallic probe
approaching a sphere trapped by the Gaussian beam. We sup-
pose that the probe is made of tungsten �nW=3+3.8i�, and
represent its extremity as a portion of a sphere, r in radius.
Although the probe may be macroscopic in overall length,
the EM field only hardly penetrates inside the metal because
of the very strong absorption �the skin depth is about 25
nm�,30 moreover the incident field decreases very quickly
versus � �with w0=400 nm, the amplitude of the incident
field is about 0.05E0 for �=950 nm�. Both attenuations sim-
plify the degree of discretization needed in the numerical
computation, as we may safely truncate the penetration depth
inside the metal to about a wavelength. In this context, the
metal probe is simply equivalent to a spherical cap of radius
r.

Physically, the influence of the probe on the particle
equilibrium is due to light scattering by the metal, which
causes a modification of the EM field felt by the particle. Of
course, this effect should be important only when the tip gets
very close to the particle.

Figure 4 shows the x component of the force experi-
enced by the sphere for a variable tip-to-optical axis distance
�d�, down to contact with the particle surface, d=a. The
sphere is supposedly held at its stable equilibrium position in
the absence of the metal probe: x=y=0 and z=zequi. The
symmetry axis of the probe coincides with y=0 and z=zequi.

In TE configuration �i.e., far from the beam axis, the
electric field is perpendicular to the �x ,z� plane�, we find that
the sphere experiences a negative force �Fig. 4�b��, meaning
a repulsion, whenever the metal tip gets close to contact. For
a=300 nm and a=500 nm, Fig. 4�b� shows that the value of
the repulsive force is weak, compared to the maximum opti-
cal trapping force along the x direction in absence of the tip.
In this context, the perturbation caused by the tip is weak.

TABLE I. Depth of the optical trap potential well, versus beam-waist and
particle radius. Brownian excursions of the particle, in rms value, are indi-
cated in brackets.

w0 350 nm 400 nm

a=100 nm 40kbT �48 nm� 25kbT �78 nm�
a=300 nm 300kbT �14 nm� 30kbT �21 nm�
a=500 nm 800kbT �12 nm� 80kbT �17 nm�

FIG. 4. x component of the optical force experienced by the sphere along
the x axis versus tip to axis distance. r=100 nm at the tip apex. The sphere
is initially located at its position of stable equilibrium. a=100 nm in bold
line, a=300 nm in dashed line, and a=500 nm in dotted dashed line. �a�
Polarization of the field along the x axis: TM polarization; �b� polarization
of the field along the y axis: TE polarization.

024915-4 Chaumet et al. J. Appl. Phys. 102, 024915 �2007�

Downloaded 16 Aug 2007 to 141.14.233.171. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



Conversely, for the smallest particle size, a=100 nm, the
repulsion reaches a few pN in amplitude, on the order of the
trapping force. Therefore, if only optical forces are present,
tip-to-particle contact is impossible in this configuration.

In TM configuration �i.e., far from the beam axis, the
magnetic field is perpendicular to the �x ,z� plane�, the x
component of the optical force near contact becomes posi-
tive, which means an attractive interaction between the tip
and the sphere �Fig. 4�a��. Physically, the attraction may be
understood as being due to the enhancement of the EM field
near the tip apex, in TM polarization. As the field enhance-
ment is localized close to the metal surface, the particle feels
an increasing field when d decreases, hence, a positive gra-
dient force. Notice that this attractive force decreases when a
increases. This is simply due to the lower limitation in the
tip-to-laser beam axis distance �d=a at contact�, with the
consequence that the maximum source field felt by the tip is
higher when a is smaller. Note that the force is slightly re-
pulsive when the sphere is 100 nm away from the tip, but the
repulsion is too weak to push the sphere outside of the opti-
cal trap. When d increases, the optical force quickly vanishes
with small oscillations, due to multiple scattering between
the tip and the sphere.

In Fig. 4, the tip radius is fixed, r=100 nm. If r is de-
creased down to 10 nm, a similar behavior is obtained but
with a smaller value of the force at contact.

We recall that, in the above analysis, the particle was
supposedly held fixed at x=y=0 and z=zequi, and the probe
axis position was set to y=0 and z=zequi. We imposed this
condition to focus the study on the x component of the
particle–metal interaction, in the coaxial configuration, for a
particular position of the particle–tip couple along the x axis.
Note that an attractive x component of the force is not suffi-
cient to provide particle equilibrium at the metal tip, because
the z component of the force, Fz, in general, is not null. We
now address the problem of the equilibrium of the particle–
tip complex, still in the coaxial configuration �the probe axis
goes through particle center�, for different positions of the
complex inside the �x ,z� plane. Equilibrium requires Fx	0,
Fz=0, and ��Fz /�z�
0. Results are displayed in Fig. 5.

The first line of Fig. 5 �Figs. 5�d�, 5�g�, and 5�j�� shows
the situation in the absence of the metal probe, for reference.
The field polarization is TM. Figure 5 shows the �color-
coded� amplitude of Fz, as a function of x and z, and indi-
cates the sign of the x component: Fx
0 �Fx	0� above
�below�, dotted green line, respectively. The line in white
shows the case Fz=0. In the absence of the probe, Fig. 5 has
the symmetry of the laser beam itself, and the dotted line is
confounded with the z axis.

The second line, �Figs. 5�e�, 5�h�, and 5�k�� shows the
situation with a very sharp metal probe, corresponding to a
very small tip radius �r=10 nm�. Note that the tip only has a
very small influence when the particle is large, i.e., a�r: the
z coordinate of stable equilibrium, zequi, is only slightly de-
creased �see Fig. 5�h�: a=300 nm and Fig. 5�k�: a
=500 nm�. Therefore, it should not be difficult to bring the
metal tip in contact with the optically trapped particle. The
perturbation caused by the tip becomes large with a small
particle, a=100 nm �see Fig. 5�e��. The diagram still indi-
cates the existence of a very narrow equilibrium zone, in the
form of a small spindle, near the origin. But it may be very
difficult to bring the tip–particle complex within this zone,
starting from a separated configuration.

Not surprisingly, a less sharp tip has a greater influence
�r=100 nm�, as illustrated in the third line of Fig. 5. Figures
5�i� and 5�l� show that equilibrium is still possible with a
large particle �a=300 nm and a=500 nm, respectively�, but
with a decreased zequi, as already noticed. However, there is
no stable position when the particle is too small, as can be
seen from Fig. 5�f� �a=100 nm�. In this configuration it
should be impossible to keep the tip and the sphere in con-
tact.

In summary, we find that the particle–tip complex, in
coaxial configuration, can be maintained under the sole ac-
tion of optical forces, provided that the tip radius is small
enough and the particle size large enough. This conclusion
holds for a TM polarization of the EM field. Presumably, TE
polarization favors dissociation of the complex, whatever

FIG. 5. �Color online� �a� �Without a
tip�, �b� �r=10 nm�, and �c� �r
=100 nm�. �d�, �e�, and �f�: a
=100 nm. �g�, �h�, and �i�: a
=300 nm. �j�, �k�, and �l�: a
=500 nm. Each color map represents
the z component of the optical force
acting on the sphere, in �x ,z� plane.
Fz=0 along the white bold line, and
Fx=0 along the green dashed line:
above this line, Fx
0 �sphere–tip re-
pulsion�, and below this line, Fx	0
�sphere–tip attraction�.
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particle and tip sizes. Recall that the computation has been
done for a tungsten tip: gold would cause larger interactions,
probably with similar but stronger trends.

IV. DISCUSSION

The above calculations led us to conclude that the di-
electric sphere can be either brought in contact with or de-
tached from the metal tip through the sole action of optical
forces. Up to now, we have only considered the mechanical
action of light on the system, and ignored the importance of
other interactions, such as Van der Waals, hydration, and
electrostatic forces. The latter forces, which we may globally
refer to as “colloidal,” may in fact be considerable and over-
whelm the optical forces in a real experiment. Another mat-
ter of complication is light absorption by the metal tip, which
inevitably will heat up, with the consequence of a nonuni-
form temperature distribution over the particle–tip system.
The resulting surface temperature gradient will be the source
of a fluid convection �the so-called “Maxwellian creep”
flow�, which through momentum conservation, will impart a
force �usually termed “photophoretic”� on the system.31 Es-
timating the importance of the photophoretic force is a very
complex problem by itself, well beyond the scope of this
paper. This point will thus remain unanswered, and left as an
open question, to be possibly examined in forthcoming ex-
periments. Conversely, orders of magnitude of colloidal
forces can be obtained through rather simple statistical ther-
modynamics, at thermal equilibrium.32,33 This point is
shortly addressed in Appendix C. Our conclusion is that the
particles to be used in experiments, because they are electri-
cally charged in water, will inevitably be attracted to the
metal tip, and that the related force is expectably consider-
able �on the order of nanonewtons�. However, it is important
to realize that this prediction and that about optical forces as
well, only holds in the context of equilibrium. The real ex-
perimental situation may well be an out-of-equilibrium one,
because bringing the particle in contact with the metal im-
plies completely eliminating the fluid film in between, which
may last very long on the experimental time scale. Indeed,
experiments by Nadal et al., carried out with polystyrene
microspheres close to an indium-tin-oxide �ITO� electrode,34

showed that only a fraction of them would stick on the ITO
surface, while the other ones could be trapped and detached
by laser radiation pressure forces. At true equilibrium, all of
them should have been irreversibly stuck on the conducting
surface.

V. CONCLUSION

We have computed the optical forces involved in optical
tweezers geometry, based on a rigorous description of the
waist region of a tightly focused laser beam. We noticed that
details of the beam structure, not accounted for in approxi-
mate representations, are important in predicting reverse ra-
diation pressure effects for submicrometer particle sizes. We
afterwards studied the perturbation caused by a metal tip
approaching the trapped particle, and addressed the question
of whether the particle could be kept in stable contact to the
tip, under the sole action of optical forces. We found that this

was possible, but only for appropriate tip and particle sizes,
and laser beam polarization. This positive conclusion is,
however, subject to reservation when predicting what will
happen in a real experiment: as we commented, colloidal
forces, mainly due to electrical charges of glass or polysty-
rene particles in water, and heating due to metal absorption,
may make the actual picture far from that restricted to optical
forces only.
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APPENDIX A: INTEGRATION NEEDED TO COMPUTE
A GAUSSIAN BEAM

Below, we give explicit expressions for the Ii functions
entering Eqs. �7�–�14�. Polar coordinates are used for the k
variable in the integrals, and kz is defined by k0

2= �� /c�2

=k2+kz
2:

I1�r� = 

0

+�

w0
2f�k�exp�ikzz�J0�k��k dk , �A1�

I2�r� = 

0

+�

w0
2f�k�exp�ikzz�J1�k��k2dk , �A2�

I3�r� = i

0

+�

w0
2f�k�exp�ikzz�J1�k��kkzdk , �A3�

I4�r� = 

0

+� k2w0
2

kz
f�k�exp�ikzz�J1�k��dk , �A4�

I5�r� = i

0

+� w0
2

2
f�k�exp�ikzz�J0�k��

k3

kz
dk , �A5�

I6�r� = i

0

+� w0
2

2
f�k�exp�ikzz�J2�k��

k3

kz
dk , �A6�

where f�k�=exp�−k2w0
2 /2�, and J0, J1, J2 are the zeroth-,

first-, second-order Bessel functions of the first kind, respec-
tively. Notice that we only take into account propagating
waves to model the Gaussian beam.28

APPENDIX B: POWER OF THE GAUSSIAN BEAM
In this Appendix, we give the relation between the power

of the Gaussian beam, P, the field amplitude, E0, and the
Gaussian beam parameter, k0w0. The power is defined as

P = �
/

� · dS� , �B1�

where �=E�H is the Poynting vector and �·� denotes the
time average. Performing the surface integration at the waist
�z=0� and using Faraday’s law, we obtain
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P =
n�c�0

k0
E02


0

�

Re�I1�I3 + I5���� d� , �B2�

where �0=8.85�10−12 F/m is the vacuum dielectric con-
stant. After some fastidious computation, we finally obtain
the following expression:

P =
n�c�0w0

2

4
E02�1 +

�k0
2w0

2 − 1���

2k0w0
Im�w�k0w0��� ,

�B3�

where w�.� is the Faddeva function.35

APPENDIX C: COLLOIDAL FORCES BETWEEN A
DIELECTRIC SPHERE AND A METAL TIP

In this Appendix, we tentatively estimate the amplitudes
of colloidal forces between a dielectric sphere, a in radius,
and a metal tip. The latter is supposedly equivalent to a metal
sphere, r in radius. In the absence of the laser beam, we
expect the particle and metal tip to interact through disper-
sion and electrostatic forces.

Dispersion, otherwise called “Van der Waals” forces, can
be estimated through Hamaker’s theory. The force between
both spherical particles is given by32,33

FVdW�h� =
ADWM

12h2 ā , �C1�

with ā=2ar / �a+r�. In Eq. �C1�, h is the closest distance
between the surfaces of both bodies, and ADWM is the Ha-
maker constant for the DWM triplet �denoting as D, W, M
the dielectric particle material, water, and metal, respec-
tively�. Note that FVdW�h�→� when h→0, but the above
expression only makes sense in the continuum limit, i.e., on
length scales definitely larger than molecular sizes.

A practical estimate of the force at contact is given by
Eq. �C1�, giving h a cutoff value, between 1 and 2 nm �1.6
nm is standard33�. The value of ADWM can be measured in
dedicated experiments, involving the DWM triplet of inter-
est. Such information is not available to us, but an estimate
of ADWM can be obtained combining data for DD, WW, and
MM configurations, i.e., triplets in which the intermediate
medium is vacuum �or air�:

ADWM � ��ADD − �AWW���AMM − �AWW� . �C2�

The DD and WW constants have been measured: ADD

=66 zJ for polystyrene, and AWW=37 zJ, while AMM has
been estimated between 100 and 300 zJ, depending on the
particular metal.32 Taking AMM=200 zJ, we arrive at ADWM

=16 zJ. The latter value, of course, is quite rough, but it is a
practical basis in so far as we only need an order of magni-
tude estimate. Using Eq. �C1�, we thus arrive at FVdw�h
=1.6� / ā�0.5 pN/nm. With a=r=10 nm, the smallest sizes
of interest in this paper, the Van der Waals attraction is on the
order of a few piconewtons.

Electrostatic forces will be present in usual experiments
involving polystyrene or glass particles in water. In ordinary
pH conditions, these particles bear negative surface charges,
surrounded by a cloud of positive counterions. The thickness
of this cloud is the so-called “Debye length,” lD.32,33 If such

a particle comes close to a conducting surface, say a metal
plane, it will “see” its electrostatic image though this plane,
which is of the opposite sign. The same is true for the coun-
terions, resulting in an overall attraction of the particle by the
metal surface. The energy of the interaction has recently
been calculated by Nadal.36 The force at contact �h=0� is
finite and given by

Fel�h = 0� =
2�2lD

�s�0
a . �C3�

In the above expression,  is the particle surface charge den-
sity, and �s=80, the water static relative permittivity. To es-
timate the electrical attraction, we adopt typical values for
the surface charge and Debye length: =1 electron charge
per 10 nm2 �Ref. 37� and lD=100 nm. We thus arrive at
Fel�h=0� /a=200 pN/nm. This estimation only holds for a
particle–metal plane couple, but we may suppose that the
result can be generalized to a sphere–metal tip couple, at the
expense of replacing a by ā as in Eq. �C1�. The conclusion is
that the electrical force is considerably larger than both the
Van der Waals and optical forces.

Hydration forces arise due to the presence of hydration
shells around the ions located at the interacting surfaces.
They are repulsive and the working range is up to about 5
nm. An empirical expression describing them is given by the
following equation:

Fh�h� = − Kl exp�−
h

l
� , �C4�

where the characteristic length scale l ranges between 0.6 nm
and 1.1 nm, and K depends on the hydration of the surfaces
but is generally below 3−30 mJ/m2. For the limit of h→0
and taking l=1 nm and K=20 mJ/m2, we obtain Fh�h=0�
=2 pN/m, which is comparable to the Van der Waals force.
Hydration forces measured between silica surfaces have been
found to reach up to about 10 pN/nm.33 In any case, the
hydration repulsion is negligible as compared to the electro-
static force.
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